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We study the random walk problem on a class of deterministic scale-free networks displaying a degree
sequence for hubs scaling as a power law with an exponent �=log 3 / log 2. We find exact results concerning
different first-passage phenomena and, in particular, we calculate the probability of first return to the main hub.
These results allow to derive the exact analytic expression for the mean time to first reach the main hub, whose
leading behavior is given by ��V1−1/�, where V denotes the size of the structure, and the mean is over a set
of starting points distributed uniformly over all the other sites of the graph. Interestingly, the process turns out
to be particularly efficient. We also discuss the thermodynamic limit of the structure and some local topological
properties.
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I. INTRODUCTION

In the last few years, one of the most studied topics in
network theory has been the investigation of highly inhomo-
geneous structures. Networks with strong variability in local
metric and topological properties have been shown to well
represent many real structures, occurring in nature and in
man-made systems. Condensed matter and soft materials of-
ten feature an inhomogeneous organization in space �1�, and
even engineered devices can be constructed to reproduce a
highly varying arrangement, in order to obtain the designed
physical properties �2�. Such networks, being physically em-
bedded in space, are finite-dimensional and it is known that
in this case inhomogeneous topology can strongly affects
physical phenomena occurring on the network itself.

Graphs are also used to describe the generic relation be-
tween a set of elements or agents, as it happens in complex
networks theory in biology, social science, computer science,
and economy �3,4�. Then, these networks often feature infi-
nite dimensionality, and inhomogeneity has been detected in
several real systems �5–8�. One of the most studied struc-
tures in the literature are scale-free �SF� networks, which
show a degree sequence scaling with a characteristic power
law �3,9�. This implies that highly inhomogeneous regions
can be present in the network.

Random structures and stochastic approaches have ap-
peared to be very useful in this framework, even if, in real
cases, one always has to deal with a single realization of the
disorder. Due to the strong variability of the topology in the
samples, the quenched properties could not coincide with the
behavior found in the typical cases, as described by the prob-
ability distribution. Therefore, the study of quenched
samples and deterministic topologies is a very interesting
task �10–15�.

Apart from the discussion on how and why structures
with scaling degree sequences are so often encountered in
nature �16�, they certainly represent an interesting class of
inhomogeneous graphs. Original techniques have been
developed in order to characterize these topologies and
their effect on physical properties. However, the general

topological and metric features of SF graphs, on the global
and on the local scale, are still not completely understood.

Random walks are one of the simplest stochastic pro-
cesses affected by the topology of a network and, at the same
time, the basic model of diffusion phenomena and nondeter-
ministic motion. They have been extensively studied for de-
cades on regular lattices �17�, fractal networks, and finite-
dimensional inhomogeneous structures �18�, where they have
been shown to be able to evidence a new and unexpected
phenomenon arising in presence of strong inhomogeneity,
namely, the splitting between local and average properties
�19�. The richer topology of a generic, inhomogeneous, and
infinite dimensional graph can have a dramatic effect on the
properties of random walks, especially when considering in-
finite graphs, which are used to describe macroscopic sys-
tems in the thermodynamic limit. Random walks represent
not only a good model for diffusion phenomena on large
complex networks, but also a direct way to characterize their
large scale topological features, also in presence of strong
inhomogeneity, and their influence on physical properties.
Once these are known, they could also be used to fruitfully
design and engineer a network topology with given proper-
ties.

In this paper, we want to deepen the analysis by studying
random walks on a specific scale-free topology, namely, a
deterministic scale-free network, built in a recursive way and
featuring a scaling distribution for the hub degrees, with an
exponent �=log 3 / log 2. For this deterministic structure,
first introduced in �20�, some metrical and spectral properties
have recently been investigated in detail �21�. On the other
hand, how these properties are linked to diffusion processes
on the network is still an open problem.

Using the formalism of random walks generating func-
tions �17�, we derive exact expressions for the first-passage
times �22� for a random walker starting from the maximally
connected hub and from the last generation “rims” of the
deterministic SF network. In particular, we investigate their
dependence on the size of the network and we derive an
exact expression for the mean time to first reach the most
connected hub, namely, the mean time to absorption if we
place a perfect trap on the most connected hub. This quantity
displays an extremely slow behavior as the size of the net-
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work increases, given by ��V1−1/�, where V denotes the size
of the structure, and the mean is over a set of starting points
distributed uniformly over all the other sites of the graph.
Interestingly, the trapping process appears to be very effi-
cient. We also obtain an implicit relation for the generating
function of the first-passage probabilities from the hub to
rims, and vice versa, which provides some insight into the
leading singularity for the generating function of the return
probability to the hub. In particular, we prove the recurrence
of the main hub by exploiting the connection between ran-
dom walks and electric networks �23�. Moreover, we com-
pare the return probability to the main hub with the return
probability to an end-node evidencing a very different
asymptotic behavior. All the results are checked with exten-
sive numerical calculations.

The paper is organized as follows: in Sec. II we give a
brief mathematical description of the deterministic scale-free
graph, presenting the language and the formalism we will
use in the whole article. Then, in Sec. III we derive the
recursive relation between the first-passage probabilities
from hubs to rims and vice versa; from these we calculate the
exact expression for the mean time to first reach the most
connected hub and its dependence on the volume of the net-
work. In Sec. IV we calculate the return probability on the
main hub and we discuss its recurrence in the thermody-
namic limit. Finally, Sec. V is devoted to conclusion and
discussion.

II. DETERMINISTIC SCALE-FREE NETWORK

A generic graph G consists in a nonempty set V of nodes
joined pairwise by a set of links L �24�. Here, we consider a
particular set of deterministic graphs �Gg�g=0,1,2,. . ., first intro-
duced in �20�, which can be built recursively: at the gth
iteration one has the graph of generation g, denoted by Gg
�see Fig. 1�.

Starting from the so-called root constituted by one single
node labeled as i=1, at the first iteration, one introduces two
more nodes i=2,3 and connects each of them to the root; the
resulting chain of length three represents the graph of gen-
eration g=1. We call B1= �2,3� the set of sites added at the
first generation and linked to the root. Then, at the second

iteration, one adds two chains of length three and connects
each end node to the root, namely, B2= �4,6 ,7 ,9�, so that the
root will increase its coordination number from 2 to 6. Pro-
ceeding analogously, at the gth iteration one introduces two
replica of the existing graph of generation g−1 and connects
the root with each site making up Bg.

Hence, at the gth generation the root turns out to be the
main hub with coordination number 2�2g−1�, the set of all
nodes has cardinality Vg�	Vg	=3g, and 	Bg	=2g. As shown
in �20�, Gg exhibits �2 /3�3g−i “hubs” with degree 2i+1−2,
being i� �1,g−1�. As a result, the tail of the degree distri-
bution is a power-law P�k��k−� with exponent
�=log 3 / log 2
1.59. However, this does not hold for the
so-called rims contained in the sets Bg. In this case one finds
P�k���2 /3�k=e−�̄k, where �̄=log�3 /2�
0.405, which
shows that the scaling nature of the rims is not scale-free but
exponential �21�. The topological and spectral properties of
this graph have been deeply analyzed in �21� where,
in particular, the average degree is shown to be �k�g
�kP�k� /Vg=4�1− �2 /3�g�, namely, it approaches 4 as
g→�. Indeed, on the one hand, the graph becomes very
complex and there exists a set of few �o�1�� nodes whose
coordination number grows indefinitely, on the other the
number of nodes with degree �2 become large indefinitely;
as a result the average degree remains finite, conversely the
second moment �k2� is divergent. It should also be under-
lined that by increasing g the number of cycles grows fast; as
a result, while the number of end-nodes grows linearly with
the volume V ��3g�, the average distance from the main hub
increases only logarithmically with V ��g�.

III. GENERATING FUNCTIONS AND FIRST-PASSAGE
PROPERTIES

The simple random walk �RW� on a graph G is defined by
the jumping probability pij between nearest-neighbor sites i
and j

pij =
Aij

zi
= �Z−1A�ij ,

where Zij =zi�ij and zi=i�VAij is the coordination number of
site i. Therefore, the probability of reaching in t steps site j
starting from i is

P�i, j ;t� = �pt�ij . �1�

In the following, we denote with Pg�i , j ; t� the probability
that a RW on Gg, starting from a site i reaches the site with
label j at time t and Fg�i , j ; t� the probability that the same
walk reaches the site j for the first time at time t. Moreover,
we consider the probability Bg�t� that, at the generation g, a
walk starting from any site in Bg first reaches the central hub
and the probability Hg�t� that a walk starting from the central
hub first reaches any site in Bg.

Now, the following equations hold:

Bg�t� =
�t,1

g
+

1

g

l=1

g−1


k=1

t−1

Hl�k�Bg�t − 1 − k� �2�

and

g = 0

g = 1

g = 2

g = 3

1

2 3

4
5

6

7

8

9

FIG. 1. �Color online� Iterative construction of the deterministic
scale-free network; the first four generations are depicted. Nodes
belonging to the set Bg are represented in brighter color.
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Hg�t� =
2g−1

2g − 1
�t,1 + 

l=1

g−1


k=1

t−1
2l−1

2g − 1
Bl�k�Hg�t − 1 − k� . �3�

Some comments are in order here. In a graph of generation g,
each rim is connected to g nodes of which one is the main
hub; this accounts for the first term in Eq. �2�. The remaining
g−1 links connect each rim to a minor hub from which one
can reach the main hub only passing through a rim; this
explains the sum of convolutions in Eq. �2�. Analogously,
from the main hub 2g links out of 2�2g−1� point directly to a
rim; the remaining links connect the main hub to nodes cor-
responding to rims of graphs of generations l�g and from
such nodes one can reach any site in Bg only through the
main hub itself.

The generating functions corresponding to Eqs. �2� and
�3� read as

B̃g�z� � 
t=0

�

Bg�t�zt =
z

g
+

z

g

l=1

g−1

H̃l�z�B̃g�z� �4�

and

H̃g�z� � 
t=0

�

Hg�t�zt =
2g−1

2g − 1
z +

H̃g�z�
2g − 1

z
l=1

g−1

2l−1B̃l�z� . �5�

Notice that, as can be easily inferred from Fig. 1, B1�t�
=H1�t�=�t,1, from which B̃1�z�= H̃1�z�=z. We also recall that,

by definition, B̃g�1� is just the probability to ever reach the

hub from any site in Bg and, analogously, H̃g�1� is the prob-
ability to ever reach any site in Bg from i=1. Of course, for

finite g, one has B̃g�1�= H̃g�1�=1. With some algebra we
rewrite Eqs. �4� and �5�, respectively, as

B̃g�z��g

z
− 

l=1

g−1

H̃l�z�� = 1 �6�

H̃g�z��2g − 1

2g−1z
− 

l=1

g−1

2l−gB̃l�z�� = 1. �7�

Moreover, by properly handling Eqs. �6� and �7� we can
obtain the following two finite-difference equations coupled
together:

1

B̃g+1�z�
−

1

B̃g�z�
=

1

z
− H̃g�z� �8�

B̃g�z� −
2

z
= −

2

H̃g+1�z�
+

1

H̃g�z�
, �9�

which can be combined together to get the rather

symmetric expression B̃g�z���B̃g+1�z��−1− �B̃1�z��−1�
=2H̃g�z���H̃g+1�z��−1− �H̃1�z��−1�.

It is interesting to notice that, since 0� H̃g�z��1,

for any g and for any z, from Eq. �6� we have z /g� B̃g�z�
�z / �g�1−z�+z�, from which one gets B̃��z�=0. Hence, in
the thermodynamic limit the probability to eventually reach
the hub from Bg is zero.

From Eqs. �6� and �7� it is possible to calculate recur-

sively B̃g�z� and H̃g�z�; for instance, for the first generations
we get

B̃2�z� =
z

2 − z2 , �10�

B̃3�z� =
z�3 − z2�

9 − 8z2 + z4 , �11�

B̃4�z� =
z�3 − z2��14 − 11z2 + z4�

168 − 282z2 + 145z4 − 24z6 + z8 , �12�

and

H̃2�z� =
2z

3 − z2 , �13�

H̃3�z� =
4z�2 − z2�

14 − 11z2 + z4 , �14�

H̃4�z� =
8z�2 − z2��9 − 8z2 + z4�

270 − 435z2 + 211z4 − 31z6 + z8 . �15�

The generating functions B̃g�z� and H̃g�z� allow to calculate
the average time tg

B taken by a random walk started on a site
in Bg to reach the hub and the average time tg

H taken by a
random walk started on the main hub to reach any site in Bg,
respectively. In fact, for any arbitrary generation g we can
write

tg
B =

�

�z
B̃g�z�	z=1 �16�

tg
H =

�

�z
H̃g�z�	z=1. �17�

Hence, deriving Eqs. �6� and �7� and recalling that for finite

structures B̃g�1�= H̃g�1�=1, we find the following coupled
equations:

tg
B = g + 

l=1

g−1

tl
H, �18�

tg
H = 2 − 21−g + 2−g

l=1

g−1

2ltl
B. �19�

Notice that the previous two equations could be obtained
directly from Eqs. �2� and �3� by multiplying both sides by t
and summing over t=0, . . . ,�.

Now, from Eqs. �18� and �19� we get

tg+1
B − tg

B = 1 + tg
H �20�
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2tg+1
H − tg

H = 2 + tg
B. �21�

Such equations can be properly handled to get

2tg+2
H − 3tH

g+1 = 1, �22�

and

2tg+2
B − 3tg+1

B = 3, �23�

whose solution is given by

tg
H =

4

3
�3

2
�g

− 1, �24�

and

tg
B =

8

3
�3

2
�g

− 3, �25�

where we used t1
H= t1

B=1.
Interestingly, tg

B and tg
H both display the same exponential

law: the average time to first reach the hub from any of the
2g sites making up Bg and the average time to first reach any
site in Bg from the hub grows with the generation as
��3 /2�g. Also, recalling that 	Bg	=2g and that Vg=3g, we can
write 2g=Vlog 2/log 3 and get �3 /2�g=Vg / 	Bg	=V1−log 2/log 3.

The average times tg
B and tg

H found above are useful to
calculate the mean time to absorption �g. In fact, let us define
tg�i� the mean time necessary to first reach the hub from site
i�1, then �g�i�Vg�

tg�i� / �Vg−1� and we can write


i�Vg�

tg�i� = 
i�Vg−1�

tg−1�i� + 
i�Vg∖Vg−1

tg�i� , �26�

namely,

�g = �g−1
Vg−1 − 1

Vg − 1
+

1

Vg − 1 
i�Vg∖Vg−1

tg�i� , �27�

where Vg��Vg∖ �1� and Vg∖Vg−1 is the set of sites added at
the gth generation. We now notice that the last sum in Eq.
�27� is just given by


i�Vg∖Vg−1

tg�i� = tg
B	Bg	 + �tg

B + 1�
	Bg	
2

+ 
l=1

g−2

��g�3l − 1� + 3ltl+1
H

+ 3ltg
B�2g−l−1, �28�

where the first two terms simply allow for 	Bg	 rims and
	Bg	 /2 nodes bridging between two rims; then, from the re-
maining nodes making up Vg∖Vg−1 one can reach the main
hub by passing through any rim, possibly via a minor hub,
and this yields to the last sum.

By replacing in the previous equation the expressions for
tg
B and tg

H found in Eqs. �24� and �25�, we get


i�Vg∖Vg−1

tg�i� =
2g

5
+

32

15
�9

2
�g

−
8

3
3g + 2g−1

l=1

g−2

�l
3l − 1

2l ,

�29�

which, together with Eq. �27� yields

�3g+1 − 1��g+1 − 3�3g − 1��g =
16

3
� 3g��3

2
�g

−
1

2
� .

The solution of this recursive equation is

�g =
1

3g − 1
�32

9
�9

2
�g

−
2

9
�17 + 4g�3g� , �30�

whose leading behavior is given by

�g � Vg
1−log 2/log 3 = Vg

1−1/�, �31�

with 1−log 2 / log 3
0.37. Such an exponent is even lower
than the exponent log 2 / log 3=1 / ���−1�
0.63 found in
�10� for a deterministic scale-free network displaying the
power degree ��=1+log 3 / log 2=1+�. Indeed, the multi-
fractal nature displayed by the graph under study gives rise
to a remarkable efficiency for trapping on i=1.

Numerical calculations

For a generic graph, given the corresponding adjacency
matrix A and the coordination matrix Z, the numerical cal-
culation of the mean time to absorption can be performed by
exploiting a differential equation where the normalized dis-
crete Laplacian �=AZ−1−I appears �10,11,25,26�. More
precisely, for the topological structures analyzed here, the
Laplacian �g is a Vg�Vg matrix which depends on the gen-
eration g and we have

− 
j=2

Vg

�gij
tg�j� = 1. �32�

Therefore, the mean time to absorption averaged over all
possible starting sites i�1 reads as

�g =
1

Vg − 1
i=2

Vg

tg�i� =
1

Vg − 1
i=2

Vg


j=2

Vg

�− �g
−1�ij . �33�

In Fig. 2 we compare the analytical results of Eq. �30� and of
Eq. �31� with the numerical results obtained via Eq. �33�.

10
0

10
2

10
4

10
0

10
1

10
2

Vg

τ g

V
1−log 2/ log 3
g

FIG. 2. �Color online� Mean first-passage time �g for a simple
random walker moving on the deterministic sale-free network as a
function of the volume Vg; data from the exact analytic expression
in Eq. �30� ��� are compared to the asymptotic form of Eq. �31�
�dash-dotted line� and to the numerical solution of Eq. �33� �+, the
continuous line is a guide to the eye�.
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IV. RETURN PROBABILITY

The results found in the previous section allow to deepen
the analysis of the random walk problem on the determinist
structure considered. In particular, the probability Fg�1,1 ; t�
that a random walk started on the hub returns to the hub
itself for the first time after time t has the form

Fg�1,1;t� = 
i=1

g 	Bi	
Zg11

Bi�t − 1� = 
i=1

g
2i

2�2g − 1�
Bi�t − 1�

�34�

and the pertaining generating function is

F̃g�z� � 
t=0

�

Fg�1,1;t�zt = z
i=1

g
2i−1

2g − 1
B̃i�z� . �35�

By replacing the expression for B̃g�z� appearing in Eq. �9�,
we get the telescopic sum i=1

g �2i+1 / H̃i+1�z�−2i / H̃i�z��, so
that Eq. �35� simplifies into

F̃g�z� = 2 +
z

2�2g − 1�� 2

H̃1�z�
−

2g+1

H̃g+1�z�
�

= 2 +
1

2g − 1
−

2gz

�2g − 1�H̃g+1�z�
, �36�

which highlights that the probability to first return on the hub
at generation g directly depends on the probability to first
reach any site in Bg+1 starting from i=1. We also notice that

for finite g, F̃g�1�=1, that is the hub is a recurrent point, as
expected for any point on finite graphs �19�.

Interestingly, from Eq. �34� we can explicitly derive the
average time tg

O to first return to the main hub as a function
of tg

H

tg
O =

�

�z
F̃g�z�	z=1 =

tg+1
H − 1

1 − 2−g =
2�3g − 2g�

2g − 1
, �37�

where in the last equality we used the result of Eq. �24�.
Therefore, for large structures we have tg

O��3 /2�g, which is
the same leading behavior found for tg

B and tg
H. This result is

also consistent with Kac formula �27� according to which
tg
O= �P�1,1 ;���−1=2	Lg	 /Zg11

=i�Vg
Zgii

/Zg11
.

From F̃g�z� we can now calculate P̃g�z�
�t=0

� Pg�1,1 ; t�zt= �1− F̃g�z��−1 �19�: using Eqs. �6� and
�36�, we get

P̃g�z� =
�2g − 1�H̃g+1�z�

2g�z − H̃g+1�z��
. �38�

From Eqs. �13�–�15�, we can derive

P̃1�z� =
1

2

2

1 − z2 , �39�

P̃2�z� =
3

4

4�2 − z2�
�1 − z2��6 − z2�

, �40�

P̃3�z� =
15

16

8�2 − z2��9 − 8z2 + z4�
�1 − z2��126 − 109z2 + 22z4 − z6�

. �41�

We checked up to generation g=8 that P̃g�z� can be written
as

P̃g�z� = �2g − 1�
f�z�

�1 − z2�g�z�
, �42�

where f�z� and g�z� are even polynomial of degree 2g−2 �in
fact all possible cycles have even length�, both devoid of any
factor �1−z2� and satisfying f�1� /g�1�=1 / �3g−2g�. In Fig. 3
we show data for P8�1,1 ; t� and for P8�i , i ; t�, being
i�Vg∖Vg−1 and zi=1, both obtained numerically from Eq.
�1�: Pg�i , i ; t�= ���g+I�t�ii. Interestingly, the decay displayed
by the two probabilities considered is significantly different,
which provides a further evidence of the strong inhomoge-
neity of the graph.

Once the thermodynamic limit is taken, a divergence in

P̃g�z� for z→1 would imply that the main hub is recurrent
�19�. Recurrence can alternatively be proven by exploiting
the connection between random walks an electric networks.
The escape probability can be determined by calculating the
effective resistivity Ref f at fixed distance from the hub, when
all the links of the network are replaced by unit resistors and
a unit voltage is applied between the hub and the points at
fixed distance from it. Then, taking the thermodynamic limit,
the relation between the escape probability from the hub and
the effective resistivity of the network reads �23�

Pesc = lim
g→�

1

Zg11
Ref f�g�

, �43�

where, we recall, Zg11
=2�2g−1� is the coordination number

of the hub at generation g. Therefore, if Zg11
Ref f�g� diverges

in the thermodynamic limit, the hub is recurrent, while if it
converges to a finite value, there is a finite probability of
escape from the hub. On highly inhomogeneous graphs such
as our scale-free networks, however, a vanishing Pesc may

10
0

10
1

10
2

10
3

10
−6

10
−4

10
−2

10
0

t

P
8
(i

,i
;t

)−
P
∞

(i
,i

;t
)

zi = 2(28 − 1)

zi = 1

FIG. 3. �Color online� Normalized return probability
Pg�i , i ; t�− P��i , i ; t� for a random walk on G8 and started at the
main hub �i=1� and at an end-node belonging to i�Vg∖Vg−1, as a
function of time t; only even instants of time have been depicted.
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not necessarily imply that the mean number of visits to the
hub is infinite �28�.

In general, when the unit voltage is applied to the result-
ing circuit, by symmetry one can detect nodes which are at
the same voltage �e.g., the rims� and short them together
without affecting the distribution of currents in the branches,
nor the effective resistivity. In this way, by applying the stan-
dard rules for the sum of resistors in series and in parallel,
one can build an equivalent network for the circuit, in terms
of the total resistivity. To better exploit the symmetry prop-
erties of the network, we consider only even values of g, so
that the points at a maximum distance from the hub are to-
pologically equivalent �an analogous relation can be easily
obtained if only odd values of g are considered�. With some
algebra one then obtains

Ref f�g� =
1

2g/2 
k=0

g/2−1
1

2k =
1

2g/2−1�1 −
1

2g/2� �44�

holding for even g. Hence, recalling that Zg11
=2�2g−1� we

derive that the main hub is recurrent.

V. CONCLUSION AND DISCUSSION

In this work we studied the random walk problem on a
class of deterministic networks exhibiting both a scale-free,
P�k��k−�, and an exponential, P�k���2 /3�k, degree distri-
bution. The latter holds for a subset of nodes called rims
which are at a distance 1 from the main node. Adopting a
generating function formalism we calculate the exact average
time � to first reach the hub, where the mean is taken over all

possible walks connecting a site i to the hub and over all
starting nodes i. The leading behavior for � turns out to be
��V1−1/�, where V is the total number of sites making up the
network. Analogous power-law behaviors were found previ-
ously for exactly decimable fractals �25,26� as well as for
other deterministic scale-free networks �10� and Apollonian
networks �11�, however, the structure considered here results
remarkably effective, being 1−1 /�
0.37. The reason lays
in the large number of cycles and in the multifractal nature of
the graph under study which determines a very short average
distance from the main hub.

In the second part of the work, we focused on the prob-
ability to first return to the main hub and we obtained a
recursive formula for its generating function which allows to
get some insight into the local topological properties of the
hub. In particular, the recurrence of the hub is proved by
mapping the graph into an electrical network whose effective
resistivity provides the escape probability from the hub.
Hence, in the thermodynamic limit, a splitting between av-
erage and local properties occurs: transience in the average is
expected due to the diverging dimensionality, while the hub
is locally recurrent.

Finally, we compared the return probability to the main
hub with the return probability to one of the outer nodes
evidencing different asymptotic behaviors. This further high-
lights the strong inhomogeneity of the graph considered.
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